Step of Proof: quotient_wf
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
quotient
wf
:
1.
T
: Type
2.
E
:
T
T
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
(
x
,
y
:
T
//
E
(
x
,
y
))
Type
latex
by ((((((Repeat (Unfolds
``equiv_rel refl sym trans`` 3))
CollapseTHEN (Unfold `member` 0))
)
CollapseTHEN (PrimEqCD))
)
CollapseTHENM ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
: .....eq aux..... NILNIL
C1:
3. (
a
:
T
.
E
(
a
,
a
)) & (
a
,
b
:
T
.
E
(
a
,
b
)
E
(
b
,
a
)) & (
a
,
b
,
c
:
T
.
E
(
a
,
b
)
E
(
b
,
c
)
E
(
a
,
c
))
C1:
4.
x
:
T
C1:
E
(
x
,
x
)
C
2
: .....eq aux..... NILNIL
C2:
3. (
a
:
T
.
E
(
a
,
a
)) & (
a
,
b
:
T
.
E
(
a
,
b
)
E
(
b
,
a
)) & (
a
,
b
,
c
:
T
.
E
(
a
,
b
)
E
(
b
,
c
)
E
(
a
,
c
))
C2:
4.
x
:
T
C2:
5.
y
:
T
C2:
6.
E
(
x
,
y
)
C2:
E
(
y
,
x
)
C
3
: .....eq aux..... NILNIL
C3:
3. (
a
:
T
.
E
(
a
,
a
)) & (
a
,
b
:
T
.
E
(
a
,
b
)
E
(
b
,
a
)) & (
a
,
b
,
c
:
T
.
E
(
a
,
b
)
E
(
b
,
c
)
E
(
a
,
c
))
C3:
4.
x
:
T
C3:
5.
y
:
T
C3:
6.
x1
:
T
C3:
7.
E
(
x
,
y
)
C3:
8.
E
(
y
,
x1
)
C3:
E
(
x
,
x1
)
C
.
Definitions
t
T
,
x
(
s1
,
s2
)
,
,
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
Sym(
T
;
x
,
y
.
E
(
x
;
y
))
,
Refl(
T
;
x
,
y
.
E
(
x
;
y
))
,
P
&
Q
,
EquivRel(
T
;
x
,
y
.
E
(
x
;
y
))
origin